Solar Activity and Amateur Radio

References

```
http://en.wikipedia.org/wiki/Sun_spots
```

http://en.wikipedia.org/wiki/Solar cycle

http://en.wikipedia.org/wiki/Skywave

http://en.wikipedia.org/wiki/List of Solar cycles

http://en.wikipedia.org/wiki/K-index

http://www.arrl.org/news/the-k7ra-solar-update-239

http://www.arrl.org/news/the-sun-the-earth-the-ionosphere

History

- Sunspots were first mentioned by the Chinese and the Greeks 400 B.C. – 300 B.C.
- The Maunder Minimum 1645-1715 occurred just as sunspots were being discovered and counted, making research difficult
- Rudolf Wolf was the first to study historical annual variations in sunspots in 1848

Physical Characteristics

- Caused by the interaction of charged particles with the sun's magnetic field
- Inhibits rise of heated matter from the interior to the surface
- Therefore, they are cooler and appear dark
- 3000-4500 deg K, versus 6000 deg K
- Surface endpoints of tubes of magnetic flux
- Each north magnetic pole sunspot has a corresponding south magnetic pole sunspot at the other end of the tube

- The sunspot number varies in an 11 year cycle, which is actually a 22 year cycle
- During one 11 year cycle, north magnetic sunspots appear in the geographic north of the sun
- During the next cycle, south magnetic sunspots appear in the geographic north of the sun

List of Solar Cycles

•	Cycle Started SSN; end of cycle)[5][6]	Finished Spotless days (en	Duration (years) d of cycle)[7][8][9	Maximum (mont	hly SSN (Smoothe	d Sunspot Numbe	r))[4]	Minimum (montl	hly
•	Solar cycle 1		June 1766	11.3	86.5	11.2			
•	Solar cycle 2	June 1766	June 1775	9.0	115.8	7.2			
•	Solar cycle 3	June 1775	September 1784	9.3	158.5	9.5			
•	Solar cycle 4	September 1784	May 1798	13.7	141.1	3.2			
•	Solar cycle 5	May 1798	December 1810	12.6	49.2	0.0			
•	Solar cycle 6		May 1823	12.4	48.7	0.1			
•	Solar cycle 7		November 1833	10.5	71.5	7.3			
•	Solar cycle 8	•	July 1843	9.8	146.9	10.6			
•	Solar cycle 9	July 1843	December 1855	12.4	131.9	3.2	~654		
•	Solar cycle 10	December 1855	March 1867	11.3	97.3	5.2	~406		
•	Solar cycle 11	March 1867	December 1878	11.8	140.3	2.2	~1028		
•	Solar cycle 12	December 1878	March 1890	11.3	74.6	5.0	~736		
•	Solar cycle 13	March 1890	February 1902	11.9	87.9 (Jan 1894)	2.7	~938		
•	Solar cycle 14	February 1902	August 1913	11.5	64.2 (Feb 1906)	1.5	~1019		
•	Solar cycle 15	August 1913	August 1923	10.0	105.4 (Aug 1917)		5.6	534	
•	Solar cycle 16	August 1923	September 1933	10.1	78.1 (Apr 1928)	3.5	568		
•	Solar cycle 17	September 1933	February 1944	10.4	119.2 (Apr 1937)	7.7	269		
•	Solar cycle 18	February 1944	April 1954	10.2	151.8 (May 1947))	3.4	446	
•	Solar cycle 19	April 1954	October 1964	10.5	201.3 (Mar 1958)		9.6	227	
•	Solar cycle 20	October 1964	June 1976	11.7	110.6 (Nov 1968)		12.2	272	
•	Solar cycle 21	June 1976	September 1986	10.3	164.5 (Dec 1979)	12.3	273		
•	Solar cycle 22	September 1986	May 1996	9.7	158.5 (Jul 1989)	8.0	309		
•	Solar cycle 23 [11]	May 1996	December 2008 [[10]	12.6	120.8 (Mar 2000)	1	1.7	821
•	Solar cycle 24	December 2008 [10]						
•	Mean		10.6	114.1	5.8				

Effect on the Earth

- Climate The Maunder Minimum corresponds to the Little Ice Age, during which glaciers advanced through northern Europe
- Sunspots emit solar prominences and solar flares, causing charged particles to impact the earth
- Prehistoric sunspot levels can then be measured by C14 levels

11,000 year variations

Ionosphere

- Charged particles and electromagnetic radiation from the sun striking the upper atmosphere causes charged layers to form
- More charged particles cause stronger layers
- The D layer is generally an absorption layer, especially for the lower frequencies
- The E layer is also generally an absorption layer

Ionosphere Layers

E – 100 km, F1 – 200 km, F2 – 300 km
 Night Day

- When the E layer is especially heavily ionized,
 Sporadic E propagation can occur, which includes frequencies as high as VHF
- Sporadic E is generally short lived in time, and small geographically
- The F layer, or F1 and F2 layers, are mainly responsible for long range propagation of the higher HF frequencies 20 through 10 meters
- The F layer nearly disappears at night during the low years of the sunspot cycle

- The passage of radio waves through the ionosphere is analogous to light passing through a lens
- The speed of propagation changes with charge density, just as the speed of light slows down in a lens compared to free space
- The higher the charge density, the more bending that will occur

- The ionosphere is not necessarily parallel to the surface of the earth.
- If tilted toward or away from you, can cause your transmission to have a different distance than your reception
- "You can hear them, but they can't hear you"
- If tilted to the side, propagation may be in a different direction that your antenna is pointed

Solar Indices

- Solar activity is measured by several numbers
- Sun Spot number a weighted count of the number of sunspots, where large spots count more than small ones
- Solar Flux a measure of solar radiation at the wavelength of 10.7 cm
- K Index a measure of geomagnetic activity
- A Index also a measure of geomagnetic activity

- Solar Flux is related to Sunspot Number
- From 10/12/2012 report The sunspot numbers for October 4-10 were 56, 55, 39, 37, 41, 63 and 71, with a mean of 51.7. The 10.7 cm flux was 109.5, 106.2, 98.8, 98.1, 103.4, 106.2 and 112, with a mean of 104.9.
- From the 5/26/2000 report Sunspot numbers for May 18 through 24 were 297, 239, 282, 271, 207, 150 and 185 with a mean of 233. 10.7 cm flux was 252.9, 254.3, 245.6, 232.3, 214.9, 204.3 and 189.4, with a mean of 227.7

- In the report for 6/29/2007 Sunspot numbers for June 21 through 27 were 0, 0, 0, 0, 11, 11 and 15 with a mean of 5.3. 10.7 cm flux was 65.5, 65.3, 65.9, 66.9, 67.6, 70.5, and 73.2, with a mean of 67.8.
- Higher Sunspot and Solar Flux numbers mean a stronger F layer and better propagation
- Lower numbers mean worse propagation

- The 10.7 cm flux is the measure of radiation at a UHF frequency, approx. 3000 MHz
- The radiation that causes F layer ionization is ultraviolet at a wavelength of 100 to 1000 Ångströms
- The radiation that causes E layer ionization is soft X-rays at a wavelength of 10 to 100 Ångströms
- The radiation that causes D layer ionization is hard X-rays at a wavelength of 1 to 10 Ångströms
- 1 Ångström = 10^{-8} cm

A and K Indices

- The K Index is measured every 3 hours at various locations on earth, and varies from 1 – Calm, to 9 – Severe Storm
- The A Index is a daily average calculated from the K Index. It varies from 1 to 400
- The K Index is roughly proportional to the logarithm of the A Index
- The a Index is the equivalent of the K, the A is the average of the 8 a's for the day

- Equivalent range a for given K
- K O O+ 1- 1 1+ 2- 2
- a 0 2 3 4 5 6 7
- K 2+ 3- 3 3+ 4- 4 4+
- a 9 12 15 18 22 27 32
- K 5- 5 5+ 6- 6 6+ 7-
- a 39 48 56 67 80 94 111
- K 7 7+ 8- 8 8+ 9- 9
- a 132 154 179 207 236 300 400

- A value of K, a, or A without a subscript is a local value based on one observatory
- A subscript of p as in Kp, ap, Ap, means a weighted planetary average
- An A Index of 15 or below, or a K Index at or below 3 is acceptable for propagation

Software

- Radio Station WWV gives the summary of the Solar Flux and A and K indices at 18 minutes past the hour
- Most DX Clusters can give the latest, or a history of these numbers with the command
- "show wwv"
- The ARRL gives a summary of numbers on a weekly basis as Bulletins or emails or as web page
- Once a week Solar Flux or Sunspot is sufficient, but A and K can change rapidly

 The numbers can be entered into propagation forecast programs such as Propview from DX Labs